Forward Scattering Series and Padé Approximants for Acoustic Wavefield Propagation in a Vertically Varying Medium

نویسنده

  • Bogdan G. Nita
چکیده

We present the application of the theory of Padé approximants to extending the perturbative solutions of acoustic wave equation for a three dimensional vertically varying medium with one interface. These type of solutions have limited convergence properties depending on either the degree of contrast between the actual and the reference medium or the angle of incidence of a plane wave component. We show that the sequence of Padé approximants to the partial sums in the forward scattering series for the 3D wave equation is convergent for any contrast and any incidence angle. This allows the construction of any reflected waves including phase-shifted post-critical plane waves and, for a point-source problem, refracted events or headwaves, and it also provides interesting interpretations of these solutions in the scattering theory formalism. AMS subject classifications: 35P25, 35J05, 34E10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic continuation of perturbative solutions of acoustic 1D wave equation by means of Padé approximants

The forward scattering series is an important and useful tool in constructing perturbative solutions to wave equation and understanding their relationship to their non-perturbative counterparts. When it converges, the series describes the total wavefield everywhere in a given medium as propagations in a reference medium and interactions with point scatterers. The method can be viewed as constru...

متن کامل

Generic properties of Padé approximants and Padé universal series

We establish properties concerning the distribution of poles of Padé approximants, which are generic in Baire category sense. We also investigate Padé universal series, an analog of classical universal series, where Taylor partial sums are replaced with Padé approximants. In particular, we complement previous studies on this subject by exhibiting dense or closed infinite dimensional linear subs...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

High-order kernels for Riemannian wavefield extrapolation

Riemannian wavefield extrapolation is a technique for one-way extrapolation of acoustic waves. Riemannian wavefield extrapolation generalizes wavefield extrapolation by downward continuation by considering coordinate systems different from conventional Cartesian ones. Coordinate systems can conform with the extrapolated wavefield, with the velocity model or with the acquisition geometry. When c...

متن کامل

A Fast Frequency Sweep Approach with a Priori Choice of Padé Approximants and Control of Their Interval of Convergence

In this work, a solution strategy based on the use of Padé approximants is investigated for efficient solution of parametric finite element problems such as, for example, frequency sweep analyses. An improvement to the Padé-based expansion of the solution vector components is proposed, suggesting the advantageous a priori estimate of the poles of the solution. This allows for the intervals of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007